Chain Decomposition of Bis(oxalato)peroxotitanate(IV) Complex Initiated by Ti(III), Cr(II), and V(II)

Nobuyoshi Shinohara,* Makoto Iwasawa, and Takashi Akiyama Department of Chemistry, Yokohama City University, Seto, Kanazawa-ku, Yokohama 236 (Received November 16, 1993)

The chain decomposition of the bis(oxalato)peroxotitanate(IV) complex $[Ti(O_2)(ox)_2]^{2-}$ (ox= $C_2O_4^{2-}$) is initiated by the addition of a very small amount of reducing agent, such as Ti(III), Cr(II) or V(II). The chain length increases with increasing the concentrations of added $[TiO(ox)_2]^{2-}$ and oxalate ion; the maximum chain length was 600 under the experimental conditions. The decomposition reaction gave 2 mol of CO_2 per 1 mol of decomposed $[Ti(O_2)(ox)_2]^{2-}$. Ti(III), Cr(II), and V(II) reductions of $[Ti(O_2)(ox)_2]^{2-}$ produced ·OH, identified by the spin-trapping technique using a 5,5-dimethyl-1-pyrroline-N-oxide radical trap. Oxygen is an inhibitor of the chain reaction in this system. The chain-decomposition mechanism is discussed.

The redox of H₂O₂ and peroxo complexes is an important chemical problem because of intrinsic interest and biological significance. 1) It is well known that the reduction of H₂O₂ by transition-metal reductants, such as Fe(II), Ti(III), Cr(II), and Ru(II), proceeds predominantly by a one-electron path with the formation of a hydroxyl radical (•OH) as the intermediate.²⁻⁸⁾ The reaction of H_2O_2 with Ti(III) as well as Fe(II)has been widely used as a device for the generation of organic-free radicals in an aqueous media. 9-12) Recently, the reduction of the peroxochromium(IV) complex, $[Cr^{IV}(O_2)_2(dien)]$, with V(IV), $[Fe(CN)_6]^{4-}$, Ti-(III), and hydroxylamine has also been studied. 13,14) It was found that both the Cr(IV) and peroxo functions are rapidly reduced by $[Fe(CN)_6]^{4-}$ and by Ti-(III), whereas VO²⁺ reduces only the Cr(IV) center.¹³⁾ In addition, although the peroxo chromium complex reacts very slowly with hydroxoylamine, the reaction is markedly catalized by Fe(II) or Fe(III).14)

We have found that the decomposition of $[\mathrm{Ti}(O_2)-(ox)_2]^{2-}$ is initiated by transition-metal reductants, such as $\mathrm{Ti}(\mathrm{III})$, $\mathrm{Cr}(\mathrm{II})$, and $\mathrm{V}(\mathrm{II})$, and proceeds by a chain reaction. This report deals with the chain decomposition mechanism of $[\mathrm{Ti}(O_2)(C_2O_4)_2]^{2-}$ initiated by the reductants.

Experimental

Materials. $K_2[Ti(O_2)(ox)_2]^{15)}$ and $K_2[TiO(ox)_2]^{16)}$ were prepared by methods described in the literature, and recrystallized. Sodium oxalate was recrystallized before use; all other chemicals used were of reagent grade. The spectrum of $[Ti(O_2)(ox)_2]^{2-}$ was invariant in the pH 2.2 to 3.5 region in the presence of oxalate ion of the 10-fold concentration of $[Ti(O_2)(ox)_2]^{2-}$. Most of our experiments were carried out in the presence of $[TiO(ox)_2]^{2-}$ and excess oxalate ion at pH≈3, where the peroxo titanium(IV) complex exists in the form of $[Ti(O_2)(ox)_2]^{2-}$. The predominant species of the oxalate ion in this pH region are $C_2O_4^2$ and $C_2O_4H^-$ ($C_2O_4H_2\rightleftarrows C_2O_4H^- + H^+$ p K_1 =1.37, $C_2O_4H^-\rightleftarrows C_2O_4^{2-} + H^+$ p K_2 =3.81). To Oxotitanium(IV) and titanium (III) exist in the form of $[TiO(ox)_2]^{2-}$ 18,19) and $[Ti(ox)_2]^{-}$ 20,21) under our experimental conditions. A

titanium(III) chloride solution was used, and an analysis for Ti³+ was made at 502 nm ($\varepsilon{=}3.97~\mathrm{mol}^{-1}~\mathrm{dm}^3~\mathrm{cm}^{-1}).^{22}$ A solution of chromium(II) was prepared by reducing chromate with zinc amalgam²³a) or electrolytically.²³b) The chromate concentration was determined spectrophotometrically ($\varepsilon_{372}{=}4830~\mathrm{mol}^{-1}~\mathrm{dm}^3~\mathrm{cm}^{-1}).^{24}$) A solution of V-(II) was produced by reducing a VO²+ solution with zinc amalgam²5) or electrolytically.²³b) A stock solution of VO²+ was prepared from vanadium(IV) oxide sulfate trihydrate and barium perchlorate.²6) The concentration of the vanadium ion was determined spectrophotometrically ($\varepsilon_{760}{=}17.5~\mathrm{mol}^{-1}~\mathrm{dm}^3~\mathrm{cm}^{-1}$ for VO²+ ²5) and $\varepsilon_{560}{=}4.37~\mathrm{mol}^{-1}~\mathrm{dm}^3~\mathrm{cm}^{-1}$ for V²+ ²7)).

Technique. Deaeration of the solutions was carried out by bubbling with pure nitrogen, which was passed over heated copper. The purified nitrogen gas was also used to provide an inert-atmosphere blanketing gas over air-sensitive solutions. A vessel equipped with an injector was used as the reaction vessel. This vessel was 10 ml in volume; after deaeration of a $[Ti(O_2)(ox)_2]^{2-}$ solution in the vessel, a very small amount of a transition-metal reductant (Ti(III), Cr(II), or V(II)) as a chain-reaction initiator was injected into the vessel as uniformly as possible using a gas-tight micro syringe. The solution in the cell was stirred at constant speed with a magnetic stirrer; the same results were obtained within 3% experimental error. A very small volume of the reductant solution was used at higher concentrations (10⁻³—10⁻² mol dm⁻³) in order to avoid any oxidation of the reductants by oxygen coming in from outside.

Analysis. The amount of decomposed $[Ti(O_2)-(ox)_2]^{2-}$ was determined spectrophotometrically $(\varepsilon_{383}=1130 \text{ mol}^{-1} \text{ dm}^3 \text{ cm}^{-1}).^{28})$ Carbon dioxide was determined gaschromatographically. Oxygen was determined by using an oxygen monitor with a Clark-type electrode (Yellow Spring Instrument YSI 5300) at 25 °C. Kinetic data for the reactions between $[Ti(O_2)(ox)_2]^{2-}$ and the reductants were obtained on a stopped-flow spectrophotometer at 25 °C. The reaction of the peroxo titanium(IV) complex with the reductant was carried out while avoiding a chain reaction in the presence of a large excess of the reductant. The decrease of $[Ti(O_2)(ox)_2]^{2-}$ obeyed pseudo-first-order kinetics.

The ESR spin-trapping technique with spin-trapping agents has proven to be useful as a diagnostic tool in the detection of intermediates that are produced in an $\rm H_2O_2$ reduction. ^{29—33)} 5,5-Dimethyl-1-pyrroline-N-oxide (DMPO)

was employed as a radical-trapping agent by following a method similar to those previously reported. $^{33)}$

The rates of •OH formation in Fenton-like reactions are relatively slow (being $10^2-10^4~{\rm mol}^{-1}~{\rm dm}^3~{\rm s}^{-1}$) compared to the reaction of its decay. Therefore, the rate constants for the reactions of •OH with an •OH scavenger cannot be directly measured in these Fenton-like reactions. However, from competitive kinetics of the reactions of DMPO and of scavengers for •OH, it is possible to measure the relative rate constant using a method reported by Finkelstein et al. ³⁴⁾ and Yamazaki et al. ³⁵⁾ We measured the ratio of the rate constants for the reaction of •OH with •OH scavengers (k) to those for the reaction of •OH with DMPO ($k_{\rm DMPO}$) in a [Ti- $(O_2)({\rm ox})_2$] ²⁻/Ti(III) system. The electron spin resonance was recorded on a conventional X-band spectrometer (JEOL JES-RE2X ESR spectrometer).

Results and Discussion

Ti(III) as an Initiator. Ti(III) was used as a reductant which was reactive toward $[Ti(O_2)(ox)_2]^{2-}$. The chain decomposition of $[Ti(O_2)(ox)_2]^{2-}$ was initiated by the addition of a very small amount of Ti(III), which caused a fading of the yellow color of $[Ti(O_2)(ox)_2]^{2-}$. The rate constant of $[Ti(O_2)(ox)_2]^{2-}$ with Ti(III) was 2.2×10^4 mol⁻¹ dm³ s⁻¹ in oxalate buffer (pH 3.2) and the rate constant was independent of the concentration of $[Ti(O_2)(ox)_2]^{2-}$ and Ti(III). Typical data of the chain decomposition are presented in Table 1. The chain length was independent of the concentration of $[Ti(O_2)(ox)_2]^{2-}$ and almost independent of the concentration of Ti(III). On the other hand, the chain length increased with increasing the concentration of $[TiO(ox)_2]^{2-}$.

Most of our experiments were carried out in the presence of $[TiO(ox)_2]^{2-}$, where free H_2O_2 does not exist. However, a small amount of H2O2 existed in the solution due to the dissociation of $[Ti(O_2)(ox)_2]^{2-}$ $(\log K = 5.5)$ in some of the experiments carried out. Therefore, the effect of free H₂O₂ on the chain length was examined, and some decrease of the chain length was observed upon the addition of a small amount of H₂O₂ (Table 1). A large portion of Ti(III) will react with $[Ti(O_2)(ox)_2]^{2-}$, judging from the reaction rate constants of $[\text{Ti}(O_2)(ox)_2]^{2-}$ with Ti(III) $(2.2 \times 10^4)^{2-}$ $\mathrm{mol^{-1}\,dm^3\,s^{-1}})$ and of $\mathrm{H_2O_2}$ with $\mathrm{Ti(III)}$ $(1.0\times10^4$ $\text{mol}^{-1} \, \text{dm}^3 \, \text{s}^{-1}$) as well as the concentrations of free H_2O_2 and $[Ti(O_2)(ox)_2]^{2-}$ in the solution. Even if a small amount of Ti(III) reacts with free H₂O₂, the OH radical is formed as a reaction product, 33) which enters into the chain-reaction process. Thus, the decrease is attributed to the decrease of $[TiO(ox)_2]^{2-}$ due to the reaction of free H_2O_2 with $[TiO(ox)_2]^{2-}$ to give [Ti- $(O_2)(ox)_2$]²⁻. If H_2O_2 is not added to the solution, free H₂O₂ does not essentially affect the chain decomposition. The chain length increased with an increase in the concentration of not only $[TiO(ox)_2]^{2-}$, but also the oxalate ion (Tables 1 and 2). The maximum chain length was 600 under the present experimental conditions, and

the chain decomposition gave 2 mol of CO_2 per 1 mol of the decomposed $[Ti(O_2)(ox)_2]^{2-}$ (Table 3).

A possible mechanism for the chain reaction is as follows:

$$[Ti(O_2)(ox)_2]^{2-} + [Ti(ox)_2]^{-} + H_2O \longrightarrow$$

 $2[TiO(ox)_2]^{2-} + OH + H^+$ (1)

$$[\text{TiO}(\text{ox})_2]^{2-} + \cdot \text{OH} + \text{H}^+ \longrightarrow$$

 $[\text{TiO}(\text{ox})] + \text{CO}_2 + \cdot \text{CO}_2^- + \text{H}_2\text{O}$ (2)

$$[\mathrm{TiO}(\mathrm{ox})] + \mathrm{C_2O_4}^{2-} \longrightarrow [\mathrm{TiO}(\mathrm{ox})_2]^{2-} \tag{3}$$

$$\cdot \text{CO}_2^- + [\text{TiO}(\text{ox})_2]^{2-} + 2\text{H}^+ \longrightarrow$$

$$\text{CO}_2 + [\text{Ti}(\text{ox})_2]^- + \text{H}_2\text{O}$$
(4)

The overall reaction is

$$[Ti(O_2)(ox)_2]^{2-} + C_2O_4^{2-} + 2H^+ \longrightarrow$$

 $[TiO(ox)_2]^{2-} + 2CO_2 + H_2O.$ (5)

The peroxotitanium(IV) complex probably reacts with Ti(III) to give the $\cdot OH$ radical according to Eq. 1.³⁶ Kristine et al.³⁷⁾ also inferred the elimination of the $\cdot OH$ radical from $[Ti(O_2)(edta)]^{2-}$ in the reduction of the peroxo complex by $[Ti(edta)(H_2O)]^{-}$.

Although the chain length was small in the absence of added oxalate ion, it increased with increasing the concentration of added oxalate ion (Tables 1 and 2). This fact can probably be attributable to the relative slowness of the regeneration of $[TiO(ox)_2]^{2-}$ (Eq. 3), which is necessary to continue the chain reaction, compared to reactions (2) and (4). Radical reactions (2) and (4) take place very rapidly; therefore, $[TiO(ox)_2]^{2-}$ must be regenerated very rapidly to continue the chain reaction. In fact, no chain reaction was observed in the solution containing equimolar quantities of $Ti(O_2)^{2+}$ and oxalate ion, where $[Ti(O_2)(ox)]$ was predominant. The chain length was dependent of the concentration of $[TiO(ox)_2]^{2-}$, but independent of $[Ti(O_2)(ox)_2]^{2-}$ (Table 1). This fact also suggests that the reaction of $\cdot CO_2^-$ with $[TiO(ox)_2]^{2-}$ (Eq. 4) is more likely than with $[Ti(O_2)(ox)_2]^{2-}$. The termination reaction is probably:

$$\cdot \text{CO}_2^- + \cdot \text{CO}_2^- \longrightarrow \text{C}_2\text{O}_4^{\ 2^-}$$

$$(k = 6.5 \times 10^8 \text{ mol}^{-1} \text{dm}^3 \text{s}^{-1}).^{38)}$$
 (6)

The strong dependence of the chain length on the concentration of $[TiO(ox)_2]^{2-}$ is explained by a competitive reaction between Eqs. 4 and 6. The chain length was independent of the concentration of $[Ti(O_2)(ox)_2]^{2-}$ (Table 1) under the experimental conditions that $[Ti(O_2)(ox)_2]^{2-}$ was in excess at the beginning of each experiment, so as to complete the chain reaction. This fact can be accounted for by assuming the above-mentioned chain reaction mechanism in which the peroxo complex decomposes only by reaction (1) and subsequent reactions ((2)—(4) and (6)) are not concerned

Table 1.	Typical Data of Chain Decomposition of $[Ti(O_2)(ox)_2]^{2-}$	
Initia	ted by $Ti(III)$ at $pH=3.2^{a}$	

[Ti(III)]	$[\mathrm{TiO}(\mathrm{ox})_2]^{2-}$	$-[\mathrm{Ti}(\mathrm{O}_2)(\mathrm{ox})_2]^{2\mathrm{b})}$	$n^{\mathrm{c})}$
$10^5/\mathrm{moldm^{-3}}$	$10^3/\mathrm{moldm}^{-3}$	$\frac{10^5/\mathrm{moldm}^{-3}}{}$	n
1.50	0	14.5	10
1.50	0	15.0	$10^{\mathrm{d})}$
1.50	0	16.5	11 ^{e)}
1.50	0	5.4	$3.6^{\mathrm{f})}$
2.70	0	29.5	11
2.70	0	18.9	$7.0^{g)}$
2.50	0	25.0	10
1.00	0.50	32.0	32
0.60	1.00	21.0	35
0.90	1.00	33.3	37
1.20	1.00	45.6	38
1.60	1.00	62.4	39
1.00	3.00	54.0	54
0.50	5.00	29.5	59
1.00	5.00	64.0	64
0.65	10.0	42.9	66
1.00	10.0	75.0	75
0.50	30.0	43.6	87
0.50	50.0	47.3	95

a) A desired amount of Ti(III) was added to the $1.0\times10^{-3}~\text{mol\,dm}^{-3}~\text{[Ti(O_2)(ox)_2]^2-}$ aqueous solutions containing $1.0\times10^{-2}~\text{mol\,dm}^{-3}~\text{ox-alate ion.}$ b) Decomposed [Ti(O_2)(ox)_2]^2-. c) Chain length n; $(-[\text{Ti}(O_2)(ox)_2^2-])/[\text{Ti}(III)]$. d) [Ti(O_2)(ox)_2^2-]= $5.0\times10^{-4}~\text{mol\,dm}^{-3}$. e) [Ti(O_2)(ox)_2^2-]= $2.0\times10^{-3}~\text{mol\,dm}^{-3}$. f) No oxalate ion was added. g) H₂O₂ was added: [H₂O₂]= $5.0\times10^{-5}~\text{mol\,dm}^{-3}$. Calculated from the consumed CO₂ by using Eq. 4.

with the peroxo complex. Therefore, the chain length was independent of the concentration of the peroxo complex. The chain length was almost independent of the concentration of Ti(III) (Table 1). This fact is probably attributable to the finding that regardless of the amount of added Ti(III), reaction (4) occurs predominantly under our experimental conditions, compared to reaction (6); it is reasonable to assume that reaction (4) occurs predominantly, judging from the observed large chain length. Under these conditions the chain length is only slightly affected by the concentration of Ti(III).

Oxygen is an inhibitor of the chain reaction (Table 3). The reaction-rate constant of Ti(III) with [Ti(O₂)- $(ox)_2$]²⁻ ($k=2.2\times10^4$ mol⁻¹ dm³ s⁻¹) is about ten-times larger than that with O₂ ($k=2.0\times10^3$ mol⁻¹ dm³ s⁻¹). Therefore, Ti(III) reacts with [Ti(O₂)(ox)₂]²⁻ in an oxygenated solution. The yields for decomposed [Ti- $(O_2)(ox)_2$]²⁻, consumed O₂, and produced CO₂ are given in Table 3. This observation in the O₂-saturated solution (Table 1) appears to be consistent with the sequence in Eqs. 7, 8, 9, 10, and 11, where Eq. 7 was obtained from Eqs. 1 and 2:

$$[Ti(O_2)(ox)_2]^{2-} + [Ti(ox)_2]^{-} + C_2O_4^{2-} \longrightarrow 2[TiO(ox)_2]^{2-} + CO_2 + \cdot CO_2^{-}$$
(7)

·CO₂⁻ + O₂
$$\longrightarrow$$
 CO₂ + O₂⁻

$$(k = 2.0 \times 10^9 \text{ mol}^{-1} \text{dm}^3 \text{s}^{-1})^{39)}$$
 (8)

$$O_2^- + H^+ \rightleftharpoons HO_2 \ (pK_a = 4.8)^{40}$$
 (9)
 $2HO_2 \longrightarrow H_2O_2 + O_2 \ (k = 8.3 \times 10^5 \ \text{mol}^{-1} \, \text{dm}^3 \, \text{s}^{-1})^{41}$

$$[\text{TiO}(\text{ox})_2]^{2-} + \text{H}_2\text{O}_2 \longrightarrow [\text{Ti}(\text{O}_2)(\text{ox})_2]^{2-} + \text{H}_2\text{O}$$
 (11)

The overall reaction is as in

$$[Ti(O_2)(ox)_2]^{2-} + 2[Ti(ox)_2]^{-} + 2C_2O_4^{2-} + O_2 + 2H^+$$

$$\longrightarrow 3[TiO(ox)_2]^{2-} + 4CO_2 - 1pt + H_2O.$$
(12)

Kimura et al. 42-44) reported on a mechanism for the formation of hydrogen peroxide in a Mn(II)/oxalate/O₂ system initiated by oxidants (Mn(VII), Ce(IV), Cr(VI), Co(III) etc.) and by irradiation of $[Ru(bpy)_3]^{2+}$ with light. The formation mechanism of hydrogen peroxide, which was accounted for by a chain reaction, was studied in detail. In this system HO₂ formed by reactions (8) and (9) reacts with Mn(II) to give Mn(III), which is essential to carry forward the chain reaction. In our system, HO_2 probably forms $[Ti(O_2)(ox)_2]^{2-}$ by Eqs. 10 and 11. Therefore, Ti(III), which is essential to continue the chain reaction, will not regenerate. The identified products and their yields for decomposition in $[Ti(O_2) (ox)_2$ ²⁻/Ti(III)/O₂ systems are given in Table 3, which are in good agreement with the values calculated from Eq. 12. On the other hand, although the observed values for the consumed O2 are in good agreement with the expected value in an aerated system, those for de-

Reductant ^{b)}	Oxalate ion	$[\mathrm{TiO}(\mathrm{ox})_2]^{2-}$	$-[{ m Ti}({ m O}_2)({ m ox})_2]^{2-}$		
Reductant	$10^2/\mathrm{moldm}^{-3}$	$10^3/\mathrm{moldm}^{-3}$	$\frac{10^5/\mathrm{moldm}^{-3}}{$	n	
Ti(III)	3.0	0	5.1	17	
, ,	9.0	0	21.3	71	
	15.0	0	25.8	86	
	3.0	10.0	24.1	172	
	6.0	10.0	51.8	370	
	9.0	10.0	57.4	410	
	15.0	10.0	84.0	600	
Cr(II)	3.0	0	0.9	3	
, ,	9.0	0	3.6	12	
	15.0	0	5.1	17	
	3.0	10.0	23.0	164	
	6.0	10.0	36.4	260	
	9.0	10.0	48.2	344	
	15.0	10.0	68.6	490	
V(II)	3.0	0	2.7	g	
	9.0	0	13.8	46	
	15.0	0	19.5	65	
	3.0	10.0	11.5	82	
	6.0	10.0	35.0	250	
	9.0	10.0	38.0	271	

Table 2. Effect of Added Oxalate Ion on Chain Decomposition at pH=3.2a3

10.0

61.6

15.0

Table 3. Yields of Decomposed $[Ti(O_2)(ox)_2]^{2-}$, Consumed O_2 , and Prodused CO_2 in the $[Ti(O_2)(ox)_2]^{2-}/Ti(III)$ Systems in the Presence and Absence of O_2 a)

Medium	[Ti(III)]	$-[\mathrm{Ti}(\mathrm{O}_2)(\mathrm{ox})_2{}^{2-}]$	$-[O_2]$	$[CO_2]$
Medium	$10^4/\mathrm{moldm^{-3}}$	$10^4/\mathrm{moldm^{-3}}$	$10^4/\mathrm{moldm}^{-3}$	$10^4/\mathrm{moldm}^{-3}$
Deoxygenated	0.27	2.95		5.73 (5.90)
	0.46	7.43	_	13.3 (14.8)
Aerated	0.93	1.77 (0.47)	$0.48 \; (0.47)$	4.40 (1.85)
		$(1.30)^{b)}$		$(2.55)^{b)}$
	1.85	3.81 (0.93)	$0.96 \; (0.93)$	8.93 (3.70)
		$(2.88)^{b)}$		$(5.23)^{b)}$
O_2 saturated	1.85	$1.00 \ (0.93)$	1.17 (0.93)	3.53 (3.70)
***************************************	4.63	2.97 (2.32)	2.90 (2.32)	8.50 (9.26)

a) $[Ti(O_2)(ox)_2^{2-}]=1.0\times 10^{-3} \text{ mol dm}^{-3}$, [oxalate]=1.0×10⁻² mol dm⁻³, values in parentheses were calculated from the reaction mechanisms in text (Eq. 4) or/and (Eq. 11). b) Observed value minus calculated value.

composed $[\mathrm{Ti}(O_2)(ox)_2]^{2-}$ and for the produced CO_2 are much larger than the calculated values. The values of the observed value minus the calculated value for CO_2 are two-times larger than those for $[\mathrm{Ti}(O_2)-(ox)_2]^{2-}$. This fact indicates that the chain reaction partially occurs in an aerated system (Eq. 5).

Cr(II) as an **Initiator.** Cr(II) acts as an initiator on the chain decomposition of $[Ti(O_2)(ox)_2]^{2-}$ as well as Ti(III),

$$[\operatorname{Ti}(O_2)(ox)_2]^{2-} + \operatorname{Cr}(\operatorname{II}) \text{ (or } V(\operatorname{II})) + \operatorname{H}^+ \longrightarrow$$

$$[\operatorname{Ti}O(ox)_2]^{2-} + \cdot \operatorname{OH} + \operatorname{Cr}(\operatorname{III}) \text{ (or } V(\operatorname{III})). (13)$$

The reaction rate constant of $[\mathrm{Ti}(O_2)(ox)_2]^{2-}$ with Cr-(II) was 2.5×10^4 mol⁻¹dm³ s⁻¹, which was similar to that with Ti(III). The typical data of the chain decomposition of $[\mathrm{Ti}(O_2)(ox)_2]^{2-}$ are listed in Table 4. The chain length was small compared to that in the $[\mathrm{Ti}(O_2)(ox)_2]^{2-}/\mathrm{Ti}(III)$ system in the absence of $[\mathrm{Ti}O(ox)_2]^{2-}$ added initially. This fact is probably attributed to the smaller amount of $[\mathrm{Ti}O(ox)_2]^{2-}$ initially produced. $[\mathrm{Ti}O(ox)_2]^{2-}$ is initially produced from Ti(III) in the Ti(III) system (Eq. 1), but not produced in the Cr-(II) system (Eq. 13). The chain length depended only slightly on the concentration of Cr(II), and increased

a) $[Ti(O_2)(ox)_2^{2-}]=1.0\times 10^{-3}\ mol\ dm^{-3}$. b) $[reductant]=3.0\times 10^{-5}\ mol\ dm^{-3}$ in the absence of $[TiO(ox)_2]^{2-}$ and $[reductant]=1.4\times 10^{-5}\ mol\ dm^{-3}$ in the presence of $1.0\times 10^{-2}\ mol\ dm^{-3}$ $[TiO(ox)_2]^{2-}$.

Table 4.	Typical Data of Chain Decomposition of $[Ti(O_2)(ox)_2]^{2-}$
	ted by $Cr(II)$ at $pH=3.2^{a}$

[Cr(II)]	$[\mathrm{TiO}(\mathrm{ox})_2]^{2-}$	$\frac{-[\text{Ti}(O_2)(ox)_2]^{2-}}{10^5/\text{mol dm}^{-3}}$	n
$10^5/\mathrm{moldm^{-3}}$	$10^3/\mathrm{moldm}^{-3}$	$\frac{10^5/\mathrm{moldm^{-3}}}{$	16
1.60	0	1.76	1.7
2.80	0	5.04	1.8
1.60	0.1	4.32	2.7
0.70	2.0	13.3	19
1.41	2.0	29.5	21
2.10	2.0	46.2	22
0.90	5.0	26.2	29
0.42	10.0	15.4	37
0.90	10.0	35.6	40
1.30	10.0	51.6	40
0.90	20.0	49.5	55
0.55	50.0	44.0	80
0.90	50.0	80.1	89

a) $[Ti(O_2)(ox)_2^{2-}]=1.0\times10^{-3} \text{ mol dm}^{-3}$, $[oxalate]=1.0\times10^{-2} \text{ mol dm}^{-3}$.

with increasing the concentration of $[TiO(ox)_2]^{2-}$ and oxalate ion (Tables 3 and 4). The maximum value of the chain length was 490 under our experimental conditions. The pattern for the dependence of the chain length on the concentration of $[TiO(ox)_2]^{2-}$ or oxalate ion is similar to that in the Ti(III) system.

V(II) as an Initiator. It was found that V(II) also acts as an initiator on the chain decomposition of $[{\rm Ti}({\rm O}_2)({\rm ox})_2]^{2-}$ (Eq. 13). The reaction rate constant of $[{\rm Ti}({\rm O}_2)({\rm ox})_2]^{2-}$ with V(II) was $6.9\times 10^2~{\rm mol}^{-1}~{\rm dm}^3~{\rm s}^{-1}$, which was smaller by about 2 orders than those with Ti-(III) and Cr(II). The typical data of the decomposition are given in Table 5. The chain length in the V(II) system was small, similar to that for the Cr(II) system in the absence of $[TiO(ox)_2]^{2-}$ added initially. The chain length increased with increasing the concentration of $[TiO(ox)_2]^{2-}$ and oxalate ion at the fixed concentration of V(II) (Tables 2 and 5), and the maximum chain length obtained under our experimental conditions was 440. Although the chain length in the V(II) system was similar to that in the Cr(II) system at lower concentrations of the reductant, it decreased with increasing the concentration of V(II). This behavior is different from those obtained in the Ti(III) and Cr(II) systems. The ESR spectrum obtained after completion of the reaction in the V(II) system gave an eight-line spectrum, as shown in Fig. 1. This spectrum was identical to that given by various vanadium(IV) complexes.⁴⁵⁾ The decrease in the chain length can be attributed to the reaction.

$$\cdot \text{CO}_2^- + \text{V(IV)} \longrightarrow \text{CO}_2 + \text{V(III)}.$$
 (14)

The resulting V(III) is probably oxidized by an oxidant, such as •OH. When a small amount of V(IV) was added initially, the chain length decreased (Table 4). This fact shows that reaction (14) occurs more predominantly than does reaction (4) with increasing the concentra-

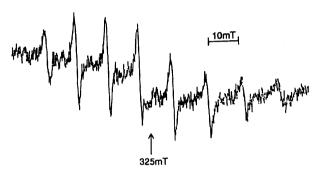


Fig. 1. ESR spectrum obtained after completion of the chain reaction in the $[\mathrm{Ti}(O_2)(\mathrm{ox})_2]^{2-}/\mathrm{V}(\mathrm{II})$ couple. Microwave power, 10 mW; field modulation width, 0.63 mT; scan time, 4 min; measured at room temperature; $[\mathrm{Ti}(O_2)(\mathrm{ox})_2^{2-}] = 1.0 \times 10^{-3}$ mol dm⁻³; $[\mathrm{Ti}O(\mathrm{ox})_2^{2-}] = 1.0 \times 10^{-2}$ mol dm⁻³; $[\mathrm{ox}] = 1.0 \times 10^{-2}$ mol dm⁻³; $[\mathrm{V}(\mathrm{II})] = 3.7 \times 10^{-4}$ mol dm⁻³; $[\mathrm{RG}(\mathrm{reciever\ gain}) = 1600$.

tion of V(IV). Fe(II) did not act as an initiator of the chain reaction in our system.

Spin-Trapping Studies. The spin-trapping procedure was used to characterize the products of metal ion/peroxide redox reactions. $^{46,47)}$ The reduction of H₂O₂ by labile Fe²⁺, Cr²⁺ or Ti³⁺ proceeds predominantly by a one-electron path with the formation of the hydroxyl radical (•OH) as the initial product.³⁻⁷⁾ The reaction of H_2O_2 with $Ti(H_2O)_6^{3+}$ was studied by the spin-trapping technique using DMPO traps; $^{31-33)}$ it was found that the Ti³⁺ reduction of H₂O₂ produces the ·OH radical. Further, the radical is intercepted by chemical mediator R (e.g. CH₃OH) to provide a more long-lived secondary carbon-centered radical, R. (·CH₂OH), which is trapped by DMPO. The trapping reaction for DMPO is shown for all radicals, ·R, according to

Table 5 .	Typical Data of Chain Decomposition of $[Ti(O_2)(ox)_2]^{2-}$
	ted by $V(II)$ at $pH=3.2^{a}$

[V(II)]	$[\mathrm{TiO}(\mathrm{ox})_2]^{2-}$	$-[\mathrm{Ti}(\mathrm{O}_2)(\mathrm{ox})_2]^{2-}$	n
$10^5/\mathrm{moldm}^{-3}$	$10^3/\mathrm{moldm}^{-3}$	$\frac{10^5/\mathrm{moldm}^{-3}}{$	16
0.90	0	2.5	2.8
2.00	0	5.6	2.8
0.40	1.0	45.2	11
2.60	1.0	28.6	11
0.90	5.0	20.9	23
0.40	10.0	13.1	33
0.60	10.0	21.3	36
0.90	10.0	27.0	30
0.90	10.0	18.9	$21^{\mathrm{b})}$
0.90	10.0	9.0	$10^{c)}$
0.90	10.0	27.0	30
2.00	10.0	45.0	23
0.55	30.0	35.5	65
0.90	30.0	50.8	56
0.30	50.0	24.8	83
0.60	50.0	45.8	76
0.75	50.0	52.6	70
0.90	50.0	60.6	67

a) $[\text{Ti}(O_2)(ox)_2^{2-}]=1.0\times 10^{-3} \ \text{mol} \ dm^{-3}, \ [\text{oxalate}]=1.0\times 10^{-2} \ \text{mol} \ dm^{-3}.$ b) V(IV) was added: $[V(IV)]=5.0\times 10^{-6} \ \text{mol} \ dm^{-3}.$ c) V(IV) was added: $[V(IV)]=5.0\times 10^{-5} \ \text{mol} \ dm^{-3}.$

(15)

$$H_{3}^{C}C$$
 $N_{\frac{1}{2}}$
 $H_{3}^{C}C$
 $N_{\frac{1}{2}}$
 $H_{3}^{C}C$
 $N_{\frac{1}{2}}$
 $H_{3}^{C}C$
 $N_{\frac{1}{2}}$

It would be interesting to obtain information regarding whether the same radical species is produced in the $[Ti(O_2)(ox)_2]^{2-}/Ti(III)$ couple as the $H_2O_2/Ti(III)$ couple. We applied the spin-trapping method to the $[Ti(O_2)(ox)_2]^{2-}/Ti(III)$ couple; the obtained ESR spectrum was the same as that obtained in the $H_2O_2/Ti(III)$ couple (Fig. 2). The spectrum obtained in $H_2O_2/Ti(III)$ couple was also in good agreement with that reported by Shepherd et al.³³⁾ A similar result was obtained in the Cr(II) and V(II) systems. The ESR spectrum obtained in the $[Ti(O_2)(ox)_2]^{2-}/Ti(III)$ couple containing CH_3OH was the same as that obtained in the $H_2O_2/Ti(III)/CH_3OH$ couple (Fig. 2). This fact indicates that the carbon-centered radical $\cdot CH_2OH$ is also formed in the $[Ti(O_2)(ox)_2]^{2-}/Ti(III)$ couple,

CH₃OH + ·OH
$$\longrightarrow$$
 ·CH₂OH₂ + H₂O
 $k = 9.7 \times 10^8 \text{ mol}^{-1} \text{dm}^3 \text{s}^{-1}.^{48)}$ (16)

The spin Hamiltonian parameters for the isotropic coupling constants of $a_{\rm N}$ and $a_{\rm H}$ for the radical-DMPO adducts are given in Table 6. These obtained coupling constants were the same as those generated via $\rm H_2O_2$ with Ti(III). All of these constants are in good agreement with the literature values obtained for the $\rm H_2O_2/Ti(III)/CH_3OH$ couple.³³⁾

Gould et al.¹⁴⁾ have suggested that a homolytic re-

Table 6. Spin Hamiltonian Parameters (mT) for Radicals Prodused by $[Ti(O_2)(ox)_2]^{2-}/Reductants^a$

Reductant	Substrate	DMPO	
recauciani	in Substitute		$a_{ m H}$
$\mathrm{Ti}(\mathrm{III})$	H ₂ O CH ₃ OH	1.49 1.57	$1.49 \\ 2.25$
$\mathrm{Cr}(\mathrm{II})^{\mathrm{b})}$	$_{ m CH_3OH}$	$1.49 \\ 1.57$	$1.48 \\ 2.24$
V(II)	$_{ m 2O}^{ m H_2O}$	$1.49 \\ 1.59$	$1.49 \\ 2.26$

a) $[Ti(O_2)(ox)_2^{2-}] = 3 \times 10^{-3} \mod dm^{-3}$, $[reductant] = 3 \times 10^{-4} \mod dm^{-3}$, $[CH_3OH] = 1 \mod dm^{-3}$, $[DMPO] = 9 \times 10^{-3} \mod dm^{-3}$. b) $[DMPO] = 5.0 \times 10^{-2} \mod dm^{-3}$.

duction by Ti(III) of an O–O bond in a peroxo-Cr(III) intermediate, formed during the reduction of peroxo-Cr(IV) complex with Ti(III), yields a Cr(III)–O· fragment. In the $[Cr(O_2)_2(\text{dien})]/Ti(III)$ system, no ESR spectrum was detected using a spin-trapping method. This fact supports the idea that Cr(III)–O· is rapidly converted via an internal electron transfer and protonation to a Cr^{IV} –OH complex without the formation of free ·OH, as proposed by Gould et al.

As mentioned previously, it is impossible to directly measure the rate constants for the reactions of \cdot OH formed in the Fenton-like reaction, because the \cdot OH formation is slow when compared to its decay. By the ESR spin-trapping technique, only the $k/k_{\rm DMPO}$ ratio can be measured. See Table 7, where the $k/k_{\rm DMPO}$ ratios, calculated from the rate constants for free \cdot OH

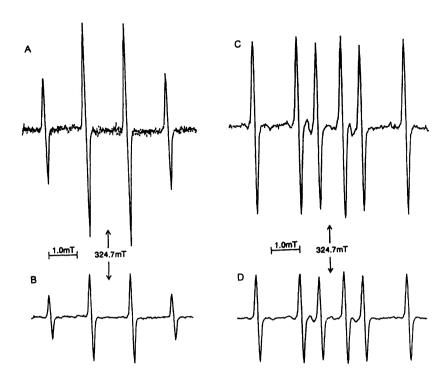


Fig. 2. ESR spectra of DMPO radical adducts generated by the $[\text{Ti}(O_2)(\text{ox})_2]^{2-}/\text{Ti}(\text{III})$ couple and $\text{H}_2\text{O}_2/\text{Ti}(\text{III})$ couple. Microwave power, 10 mW; field modulation width, 0.05 mT; scan time, 4 min; measured at room temperature; $[\text{Ti}(\text{III})]=3.0\times10^{-4} \text{ mol dm}^{-3}$; (A) $[\text{Ti}(O_2)(\text{ox})_2^{2-}]=3.0\times10^{-3} \text{ mol dm}^{-3}$, H_2O alone, RG=250; (B) $[\text{H}_2\text{O}_2]=1.0\times10^{-1} \text{ mol dm}^{-3}$, $[\text{CH}_3\text{OH}]=1.0 \text{ mol dm}^{-3}$, RG=250; (D) $[\text{H}_2\text{O}_2]=3.0\times10^{-1} \text{ mol dm}^{-3}$, $[\text{CH}_3\text{OH}]=1.0 \text{$

Table 7. $k/k_{\rm DMPO}$ for ·OH Radical Formed in [Ti- $(O_2)(ox)_2$]²⁻/Ti(III) System and Pulse Radiolysis

		$k/k_{ m DMPO}$	
	MeOH	t-BuOH	Mannitol
Pulse radiolysis	$0.23^{a)}$	0.14 ^{a)}	$0.40^{a)}$
MeOH	0.29		
t-Butanol		0.10	
Mannitol			0.48

a) These ratios were calculated from the rate constants ($10^9 \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$) for free ·OH, being 0.97 for CH₃OH, ⁴⁸) 0.60 for *t*-butanol, ⁵²) 1.7 for mannitol, ⁵³) and 4.3 for DMPO. ⁵⁴)

produced by pulse-radiolysis, are given. The values are very sensitive to the type of radical trapped.^{49—52)} If the ratio is the same as that measured in the pulse radiolysis system within the experimental error, the ·OH is very likely to be free. Thus, the ·OH formed in the reduction of $[\text{Ti}(O_2)(\text{ox})_2]^{2-}$ by Ti(III) is probably free due to the fact that the ratio k/k_{DMPO} obtained in our system was the same as those obtained in pulse radiolysis (Table 7).

In conclusion, Ti(III), Cr(II), and V(II) initiate the chain decomposition of $[Ti(O_2)(ox)_2]^{2-}$; the chain length increased with increasing the amount of added $[TiO(ox)_2]^{2-}$ and added oxalate ion. The maximum value of the chain length obtained under our experi-

mental conditions was 600, and the reaction products were CO_2 and $[TiO(ox)_2]^{2-}$. Fe(II) did not act as an initiator of the chain reaction in this system. Oxygen is an inhibitor of the chain reaction. The results obtained by the spin-trapping method with DMPO suggest the formation of \cdot OH. The resultant radical adducts RDMPO \cdot obtained in the $[Ti(O_2)(ox)_2]^{2-}$ /reductant systems have been characterized by ESR spectroscopy in good agreement with the literature values obtained in the $H_2O_2/Ti(III)$ system.

We are grateful to Dr. K. Shinozaki for valuable discussions and to Professor J. Noro for measuring of the electron spin resonance spectra.

References

- 1) I. Basolo, B. M. Hoffman, and J. A. Ibers, Acc. Chem. Res., 8, 384 (1975); M. Inamo, S. Funahashi, and M. Tanaka, Inorg. Chem., 22, 3734 (1983); S. Funahashi, S. Funada, M. Inamo, R. Kurita, and M. Tanaka, Inorg. Chem., 21, 2202 (1982); E. I. Ochiai, "Bioinorganic Chemistry," Allyn and Bacon, Boston (1977).
- 2) M. Ardon and R. A. Plane, J. Am. Chem. Soc., 81, 3197 (1959).
- 3) S. Samuni, M. Meisel, and G. Czapski, *J. Chem. Soc.*, *Dalton Trans.*, **1972**, 1273.
- 4) T. J. Conocchioli, E. J. Hamilton, and N. Sutin, *J. Am. Chem. Soc.*, **87**, 296 (1965).

- 5) C. Walling, Acc. Chem. Res., 8, 125 (1975).
- 6) W. A. Armstrong, Can. J. Chem., 47, 3737 (1969).
- 7) F. J. Kristine and R. E. Shepherd, J. Chem. Soc., Chem. Commun., 1980, 132.
- 8) C. R. Johnson, T. K. Myser, and R. E. Shepherd, *Inorg. Chem.*, **27**, 1089 (1988).
- 9) W. T. Dixon and R. O. C. Norman, *Nature*, **196**, 891 (1962).
- 10) R. O. C. Norman and B. R. Gilbert, *Adv. Phys. Org. Chem.*, **5**, 53 (1967).
- 11) R. E. Florin, F. Sicillis, and L. R. Wall, J. Res. Natl. Bur. Stand. (U.S.), Sect. A, 72A, 49 (1968).
- 12) B. C. Gilbert, R. O. C. Norman, and R. C. Sealy, *J. Chem. Soc.*, *Perkin Trans.* 2, **1973**, 2174.
- 13) S. K. Ghosh, K. Laali, and E. S. Gould, *Inorg. Chem.*, **27**, 4224 (1988).
- 14) S. K. Ghosh and E. S. Gould, *Inorg. Chem.*, **27**, 4228 (1988).
- 15) W. P. Griffith, J. Chem. Soc., 1964, 5428.
- 16) W. G. Palmer, "Experimental Inorganic Chemistry," Cambridge Univ. Press, Cambridge (1954), p. 254.
- 17) A. McAlley and G. H. Hancollas, *Trans. Faraday Soc.*, **56**, 1165 (1965).
- 18) A. Matsumoto, K. Hirata, and J. Shiokawa, Nippon Kagaku Kaishi, 1973, 50.
- 19) A. K. Babko and L. I. Duborenko, Zh. Neorg. Khim., 4, 372 (1959).
- 20) R. L. Pecsok, J. Am. Chem. Soc., 73, 1304 (1951).
- 21) K. Pan, C. C. Lai, and J. S. Huang, *Bull. Chem. Soc. Jpn.*, **44**, 93 (1971).
- 22) J. D. Ellis and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1973, 537.
- 23) a) H. Taube and H. Myers, J. Am. Chem. Soc., 76,
 2103 (1954); D. L. Ball and E. L. King, J. Am. Chem. Soc.,
 80, 1091 (1968); M. Orhanovic, H. N. Po, and N. Sutin, J.
 Am. Chem. Soc., 90, 7224 (1968); b) R. S. Tayler and A.
 G. Sykes, J. Chem. Soc. A, 1970, 1991.
- 24) C. G. Haupt, J. Res. Natl. Bur. Stand. (U.S.), 48, 414 (1952).
- 25) J. H. Espenson, A. Bakac, and J. -H. Kim, *Inorg. Chem.*, **30**, 4830 (1991); J. M. Malin and J. H. Swinehart, *Inorg. Chem.*, **8**, 1407 (1969).
- Y.-T. Fanchiang, R. N. Rose, E. Gelerinter, and E. S. Gould, *Inorg. Chem.*, 24, 4679 (1985).
- 27) G. Gordon and P. H. Tawari, J. Phys. Chem., **70**, 200 (1966).
- 28) R. M. Sellers, Analyst, 105, 950 (1980).
- 29) E. G. Janzen, Acc. Chem. Res., 4, 31 (1971).
- 30) C. A. Evans, Aldrichimica Acta, 12, 23 (1979).
- 31) J. R. Harbour, V. Chew, and J. R. Bolton, *Can. J. Chem.*, **52**, 3549 (1974).

- 32) T. K. Myser and R. K. Shepherd, *Inorg. Chem.*, **26**, 1545 (1987).
- 33) C. R. Johnson, T. K. Myser, and R. E. Shepherd, *Inorg. Chem.*, **27**, 1089 (1988).
- 34) E. Finkelstein, G. M. Rosen, and E. J. Rauckman, J. Am. Chem. Soc., **102**, 4994 (1980).
- 35) I. Yamazaki and L. H. Piette, J. Am. Chem. Soc., 113, 7588 (1991).
- 36) R. O. C. Norman, Chem. Soc. Rev., 8, 1 (1979).
- 37) F. J. Kirstine, R. E. Shepherd, and S. Siddiqui, *Inorg. Chem.*, **20**, 2571 (1981).
- 38) Q. G. Mulazzani, M. D'Angelantonio, M. Venturi, M. Z. Hoffman, and M. A. J. Rodgers, *J. Phys. Chem.*, **90**, 5347 (1986).
- 39) G. V. Buxton, R. M. Sellers, and D. R. McCracken, J. Chem. Soc., Faraday Trans. 1, 72, 1464 (1976).
- 40) B. H. J. Bielski and A. O. Allen, *J. Phys. Chem.*, **81**, 1048 (1977).
- 41) B. H. J. Bielski, *Photochem. Photobiol.*, **28**, 645 (1978).
- 42) I. H. Kolthoff, E. J. Meehan, and M. Kimura, *J. Phys. Chem.*, **75**, 3343 (1971).
- 43) M. Kimura and Y. Monma, Bull. Chem. Soc. Jpn., 46, 2246 (1973).
- 44) M. Kimura and S. Doi, J. Chem. Soc., Dalton Trans., 1983, 37.
- 45) H. J. Emeleus and A. G. Sharpe, "Advances in Inorganic Chemistry and Radiochemistry," Academic Press, New York (1970), p. 223; A. Samuni and G. Czapski, *Isr. J. Chem.*, **8**, 563 (1970); R. Mitra, T. P. McAndrew, and G. Mitra, *J. Inorg. Nucl. Chem.*, **43**, 421 (1981); H. B. Brooks and F. Sicilio, *Inorg. Chem.*, **10**, 2530 (1971).
- 46) J. R. Horbour, V. Chow, and J. R. Bolton, *Can. J. Chem.*, **52**, 3549 (1974).
- 47) M. L. Kremer, Isr. J. Chem., 9, 321 (1971).
- 48) R. L. Willson, C. L. Greenstock, G. E. Adams, R. Wageman, and L. M. Dorfman, *Int. J. Radiat. Phys. Chem.*, 3, 211 (1971).
- 49) E. G. Jansen and J. I. -P. Liu, *J. Magn. Reson.*, **9**, 510 (1973).
- 50) W. Bors, C. Michel, and K. Stettmaier, J. Chem. Soc., Perkin Trans. 2, 1992, 1513.
- 51) D. E. Hamilton, R. S. Drago, and J. Telser, *J. Am. Chem. Soc.*, **106**, 5353 (1984).
- 52) B. S. Wolfenden and R. L. Willson, J. Chem. Soc., Perkin Trans. 2, 1982, 805.
- 53) S. Goldstein and G. Czapski, Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med., 46, 725 (1984).
- 54) P. Neta, S. Steenken, E. G. Janzen, and R. V. Shetty, J. Phys. Chem., 84, 532 (1980).